
Solutions 
- No Solution: The system of equations is inconsistent 

(i.e. contains a row/equation of the form [ 0 0 … 0 | 
*]) 

- Infinite Solutions: The system doesn’t contain enough 
information (equations) to have a unique solution, 
resulting in free variables. 

- Unique Solution: There is enough information (i.e. 
there is an equal or larger number of equations than 
variables; n ≥ m) to determine the unique solution to a 
particular system, i.e. NO free variables. 

Rank 
- rank(A) = rk(A) = # of leading 1s in rref(A) 
- Also represents the number of linearly independent 

columns of A, a.k.a. the dimension of the vector space 
generated by A’s columns 

- Properties 
o rk(A) ≤ n and rk(A) ≤ m => rk(A) ≤ min(n, m) 
o If A is inconsistent, then rk(A) < n since at least 

one row will consist of all zeros 
o If A has a unique solution, then rank(A) = m, 

since every variable must be bounded to a 
value (non-free) 

Linear Transformations 
- A function  𝑇:	ℝ% → ℝ' is a linear transformation if 
𝑇(𝑥) = 𝐴�⃗� for some matrix A of size 𝑛	 × 	𝑚 

- T must also satisfy two properties: 
o 𝑇(𝑥 + �⃗�) = 𝑇(�⃗�) + 𝑇(�⃗�)		&		𝑇(𝑘𝑥) = 𝑘𝑇(𝑥) 

- When given a linear transformation T, we can 
sometimes solve for A by multiplying it with the 
𝑚	 × 	𝑚 Identity matrix to get: 

o A = 5
| ⋯ |

𝑇(𝑒9) ⋱ 𝑇(𝑒%)
| ⋯ |

; 

Matrix Multiplication 
* To multiply a 𝑚	 × 	𝑛 with a 𝑟	 × 	𝑠 matrix, n must 
equal r (n = r), and the resulting matrix will be 𝑚	 × 	𝑠 

If  𝐴 = 	 >
𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑚
B and 𝐵 = >

𝑏11 ⋯ 𝑏1𝑠
⋮ ⋱ ⋮
𝑏𝑟1 ⋯ 𝑏𝑟𝑠

B , 

then BA = >𝐵	
𝑎11 ⋯ 								𝑎1𝑚
⋮ ⋱ 𝐵			 ⋮

𝑎𝑛1 ⋯ 								𝑎𝑛𝑚
B	 

- The product of two matrices is simply the composition 
of their linear transformations 

- Properties 
o Associativity 

§ (AB)C=A(BC) 
o Distributivity 

§ (A+B)C = AC+BC 
§ A(C+D) = AC+AD 

Dimension 
- The number of vectors in a basis of V is called the 

dimension of V. 
o We can find at most m linearly independent 

vectors in V. 
o We need at least m vectors to span V. 
o If m vectors in V are linearly independent, then 

they form a basis of V. 
o If m vectors in V span V, then they form a basis 

of a. 
- Fundamental Theorem of Linear Algebra 

o dim(im A) = rank(A) 
o dim(ker A) + dim(im A) = m for any Anxm 

Coordinates 
- Consider a basis 𝔅 = (𝑣9, … , 𝑣') of subspace V of 
ℝ'.  

𝑥 = 𝑐9𝑣9 + ⋯+ 𝑐'𝑣' 
Thus, the scalars 𝑐9, 𝑐J, … , 𝑐' are the 𝔅-coordinates of 

x. In other words, [�⃗�]𝔅 = >
𝑐9
…
𝑐'
B	, meaning that 𝑥 =

𝑆[�⃗�]𝔅, where S is [𝑐9 … 𝑐J] 
- Consider a linear transformation T. Let B be the 𝔅-

matrix of T, and let A be the standard matrix of T. 
Then, 

𝐴𝑆 = 𝑆𝐵 or 𝐵 = 𝑆N9𝐴𝑆 
(Similar matrices are matrices that satisfy this 
property). 

- A 𝔅-matrix of T is diagonal only if under its basis, 
T(𝑣9)=	𝑐9𝑣9, …, and T(𝑣') = 𝑐'𝑣' 

Common 2D Linear Transformations 
- Scaling 

o If a vector �⃗� ∈ ℝ' is scaled by a factor of k, then 
the transformation matrix A is the 𝑛 × 𝑛 identity 
matrix × 	𝑘 

o → 	𝑘 >
1 ⋯ 0
⋮ ⋱ 1 ⋮
0 ⋯ 1

B = >
𝑘 ⋯ 0
⋮ ⋱ 𝑘 ⋮
0 ⋯ 𝑘

B 

- Orthogonal Projection 
o If given a line L which is spanned by the vector 

Q
𝑤9
𝑤JS, then 𝑝𝑟𝑜𝑗W(𝑥) = 𝑥// = 𝑘𝑤YY⃗ = Z⃗	∙	\YY⃗

||\YY⃗ ||]
𝑤YY⃗  

o More generally, 𝑝𝑟𝑜𝑗W(�⃗�) =

	 9
\^]_\]]

` 𝑤9
J 𝑤9𝑤J

𝑤9𝑤J 𝑤JJ
a �⃗� 

- Reflection 
o If given a line L which is spanned by the vector 

Q
𝑤9
𝑤JS, then 𝑟𝑒𝑓W(�⃗�) = �⃗� − 2�⃗�e = 2�⃗�// − 	 �⃗� 	= 

		
1

𝑤9J + 𝑤JJ
`𝑤9

J − 𝑤JJ 2𝑤9𝑤Jf
2𝑤9𝑤J 𝑤JJ − 𝑤9J

a �⃗� 

o More generally, 𝑟𝑒𝑓W(�⃗�) = Q𝑎 𝑏
𝑏 −𝑎S �⃗� 

- Rotation (counter-clockwise) 

o 𝑟𝑜𝑡h(�⃗�) = `cos	(𝜃) −sin	(𝜃)
sin	(𝜃) cos	(𝜃) a 

o More generally,  
𝑟𝑜𝑡h(𝑥) = Qa −b

b a S 		𝑤ℎ𝑒𝑟𝑒	𝑎
J + 𝑏J = 1 

- Shearing 
o Vertical: Stretching a vector along the y-axis →

	Q1 0
𝑘 1S 

o Horizontal: Stretching a vector along the x-axis 
→	 Q1 𝑘

0 1S 
o Note: k does NOT represent the number of units 

shifted 
Common 3D Linear Transformations 
- A reflection in the xy plane is given by: 

>
1 0 0
0 1 0
0 0 −1

B r
𝑥
𝑦
𝑧
t = r

𝑥
𝑦
−𝑧
t 

- Logic extends to other planes along axes. 
Basis and Unique Representation 
- A set of vectors form a basis of V iff every vector v in 

V can be expressed as a unique linear combination 
Orthonormal Bases 
- A basis in which all vectors are perpendicular and have 

a norm (length) of one. 
Orthogonal Projections 
- If a subspace V has an orthonormal basis 𝑢9, … , 𝑢', 

then 𝑝𝑟𝑜𝑗v(�⃗�) = (𝑢9 ∙ 𝑥)𝑢9 + ⋯+ (𝑢' ∙ 𝑥)𝑢' 
Orthogonal Complement 
- 𝑉e of V is the set of those vectors in ℝ' that are 

orthogonal to all vectors in V. 
- 𝑉e = ker	(𝑝𝑟𝑜𝑗v(𝑥)), (𝑉e)e = 𝑉, 𝑉 ∩ 𝑉e = {0Y⃗ } 
- dim(𝑉) + dim(𝑉e) = 𝑛 
Cauchy-Schwarz Inequality 
- |𝑥 ∙ 𝑦| ≤ �|𝑥|��|𝑦|� 
Gram-Schmidt Process and QR Factorization 
- A method of constructing an orthonormal basis of some 

subspace 

- M = >
|
𝑣9
|

|
𝑣J
|
B = 𝑄𝑅 = >

|
𝑢9
|

|
𝑢J
|
B `�|𝑣9|�	

0
𝑢9 ∙ 𝑣J
||𝑣J||

a 

- *Pattern continues for larger number of vectors* 
Orthogonal Transformations 
- Orthogonal Transformations are linear transformations 

that preserve length. 
- Properties of Orthogonal Transformations 

o ||Ax|| = ||x|| for all x in ℝ' 
o Columns of A form an orthonormal basis of ℝ' 
o ATA = In. 
o A-1 = AT . 
o (𝐴𝑥) ∙ (𝐴𝑦) 	= 	𝑥 ∙ 𝑦  

- Matrix of Orthogonal Projection 
o Given a subspace V with an orthonormal basis, 

the matrix for the orthogonal projection onto V is 

𝑃 = 𝑄𝑄�, 𝑤ℎ𝑒𝑟𝑒	𝑄 = >
|
𝑢9
|

|
	…	
|

|
𝑢'
|
B 

Inverses 
- Set up matrix equation as: 

>
∗ ∗ ∗ 		 |
∗ ∗ ∗ 		 |
∗ ∗ ∗ 		 |

1 0 0
0 1 0
0 0 1

B 

and get the left-hand side in rref. The right-hand side 
will then represent the inverse matrix, assuming 
there is no inconsistency. 

- Invertibility Criterion 
A is invertible if and only if … 
o  𝐴�⃗� = 𝑏Y⃗  has a unique solution for any 𝑏Y⃗  
o 𝑟𝑎𝑛𝑘(𝐴) 	= 	𝑛 
o 𝑑𝑒𝑡(𝐴) ≠ 0  
o 𝑘𝑒𝑟(𝐴) 	= 	 {0Y⃗ } 
o 𝑖𝑚(𝐴) 	= 	ℝ' 
o The column vectors of A form a basis of ℝ' 
o The column vectors of A span ℝ' 
o The column vectors of A are linearly 

independent. 
o 0 fails to be an eigenvalue of A. 

- Note that following from these properties, only 
square matrices may be invertible 

Subspaces 
- 𝑉 ⊂ ℝ', V is a subset of a vector space if and only if 

it satisfies: 
o 0Y⃗  is in V 
o (sum closure) ∀�⃗�, 𝑤YY⃗ ∈ 𝑉, �⃗� + 𝑤YY⃗ ∈ 𝑉 
o (scalar closure) ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ ℝ, 𝑘�⃗� ∈ 𝑉 

Redundancy and Linear Independence 
- A vector is redundant in a set of other vectors if it 

can be expressed as a linear combination of the other 
vectors, or it satisfies a non-trivial linear relation. 

- A set of vectors is linearly independent if it does not 
contain any redundant vectors 

- Determining Linear Dependence 
o Put the vectors into an augmented matrix by 

column and solve for its rref. If the last 
column contains a non-zero entry, then the set 
is linearly dependent 
§ This method corresponds to solving 

for the coefficients that satisfy the 
linear combination 

- Zero Component Condition 
o A vector is non-redundant if it contains a non-

zero entry in a component where all the 
preceding vectors have a 0. 

o If this was the case for all vectors in a set, 
then the set is linearly independent 

Properties of Determinant 
- The determinant of a triangular matrix is just the 

product of the diagonal entries 
- det �𝐴 𝐵

0 𝐶� = det �𝐴 0
𝐵 𝐶� = det(𝐴) det	(𝐶) 

- det(𝐴) = det	(𝐴�) 
- det(𝐴𝐵) = det	(𝐴)det	(𝐵) 
- det(𝐴%) = det	(𝐴)% 
- For similar matrices: 	det(𝐴) = det	(𝐵) 
- Row Operations: 

o Multiplying a single row by a scalar k: 
§ det(𝐵) = 𝑘 ∗ det	(𝐴) 

o Row Swap: 
§ det(𝐵) = −det	(𝐴) 

o Adding multiples of rows: 
§ det(𝐵) = det	(𝐴) 

Least Squares and Data Fitting 
- Normal Equation of Ax = b : 

o 𝐴�𝐴𝑥 = 𝐴�𝑏 
- Least-Squares Solution: 

o 𝑥∗ = (𝐴�𝐴)N9𝐴�𝑏 
§ Only unique in the case where A is 

linearly independent. 
- Error: 

o ||𝑏 − 𝐴𝑥∗|| 
- Orthogonal Projection onto V of basis 𝑣9, … , 𝑣': 

o 𝐴 = >
|
𝑣9
|

|
	…	
|

|
𝑣'
|
B 

o Then the matrix of the orthogonal projection 
onto V is (𝐴�𝐴)N9𝐴� 

o The projection of b onto Im(A) is 𝐴𝑥∗ 



Eigenvalues and Eigenvectors 
- Given some matrix A, if a non-zero vector v satisfies 
𝐴𝑣 = 𝜆𝑣, where 𝜆 is some scalar, then it is said that v 
is an eigenvector of A, and 𝜆 is the eigenvalue of that 
vector. 
o Geometrically, this is such a vector such that 

applying the transformation A keep the vector 
on the same line as the original vector. 

- Algebraic Method 
o 𝐴𝑣 = 𝜆𝑣 ⇒ (𝐴 − 𝜆𝐼)𝑣 = 0 ⇒ The set of 

eigenvectors of A form the null space of 
(𝐴 − 𝜆𝐼)𝑣 ⇒ ker(𝐴 − 𝜆𝐼) is non-trivial, 
meaning (𝐴 − 𝜆𝐼) is not invertible and 
det(𝐴 − 𝜆𝐼) = 0 

o Thus, first solve for every value of 𝜆 using the 
determinant of A (the determinant will give the 
characteristic polynomial, whose roots will be 
the eigenvalues). Then apply each value to 
(𝐴 − 𝜆𝐼) and solve for ker(𝐴 − 𝜆𝐼). 
§ For a 2x2 matrix, the characteristic 

polynomial is given by: 
𝜆J − 𝑡𝑟(𝐴)𝜆 − det(𝐴) = 0 

where tr(A) is given by sum of the 
diagonal elements of A. 

- Diagonalization 
o The matrix A is diagonalizable iff there exists 

an eigenbasis for it. If v1, v2, …, vn form an 
eigenbasis for A, such that Av1 = 𝜆9 v1, Av2 = 
𝜆J𝑣J, …, Avn = 𝜆' vn, then the matrices: 

𝑆 = >
| | |
v9 vJ …
| | |

B , 𝐵 = >
𝜆9 0 0
0 𝜆J 0
0 0 ⋮

B 

will diagonalize A such that 𝑆N9𝐴𝑆 = 𝐵 
§ Note: A might not have enough 

eigenvectors to form an eigenbasis, in 
which case A is NOT diagonalizable 

 
Symmetric Matrices 
- Symmetric Matrices are matrices that satisfy the 

property 𝐴 = 𝐴�. 
- Spectral Theorem: A matrix A is orthogonally 

diagonalizable (there exists an orthonormal eigenbasis 
S for A such that 𝑆N9𝐴𝑆 = 𝑆�𝐴𝑆 is diagonal) iff A is 
a symmetric matrix. 
o If two eigenvectors of A have distinct 

eigenvalues, then those two vectors must be 
orthogonal to each other. 

- Orthogonal Diagonalization of a Symmetric Matrix 
o Use the Algebraic method to determine A’s 

eigenvalues and find the basis of each 
eigenspace. 

o Use the Gram-Schmidt Process to find an 
orthonormal basis of each eigenspace. 

o Form an orthonormal eigenbasis 𝑣9, … , 𝑣' for A 
by concatenating the orthonormal bases found 
in step 2, and let 

S = >
| | | |
𝑣9 𝑣J … 𝑣'
| | | |

B 

where S is orthogonal and 𝑆N9𝐴𝑆 is diagonal. 
- Properties of Symmetric Matrices 

o 𝐴 = 𝐴� 
o 𝐴N9 must also be symmetric 

 
Miscellaneous Properties 
- dim(𝐼𝑚(𝐴)e) = dim	(ker(𝐴�)) 
- ker(𝐴�𝐴) = ker(𝐴) 
 
RREF 
- A matrix is said to be in Reduced Row-Echelon Form 

if it satisfies the following: 
o The leading coefficient in each row is 1 
o The leading variables in each equation do not 

appear in others (i.e. rows with leading 
variables must have the rest of the column of 
the leading coefficient be 0) 

o Leading variables appear in increasing order 
(i.e. leading coefficient “move” right) 

Dynamical Systems 
- A dynamical system x(t) is a system such that: 

𝑥9(𝑡 + 1) = 𝑎9,9𝑥9(𝑡) + 𝑎9,J𝑥J(𝑡) + ⋯+ 𝑎9,%𝑥%(𝑡) 
& 𝑥J(𝑡 + 1) = 𝑎J,9𝑥9(𝑡) + 𝑎J,J𝑥J(𝑡) + ⋯+ 𝑎J,%𝑥%(𝑡) 
& … ⇒ 𝐴𝑥(𝑡) = 𝑥(𝑡 + 1) ⇒ 𝑥(𝑡) = 𝐴�𝑥(0) 
- Finding the state of x at an arbitrary time t would be 

tedious since it would require t multiplications of A. 
However there is a simpler way… 

- Solving Dynamical Systems 
o Step 1: Diagonalize 𝐴 → 𝐴 = 𝑆𝐷𝑆N9 

§ Find an eigenbasis 𝔅 for A such that 
	𝔅 = {𝑣9, … , 𝑣'}. Then, 

S = >
| | | |
𝑣9 𝑣J … 𝑣'
| | | |

B ,			𝐷 = �

𝜆9 0 0 0
0 𝜆J 0 0
0 0 ⋱ ⋮
0 0 ⋯ 𝜆'

� 

Then 𝑨𝒕 = 𝑺𝑫𝒕𝑺N𝟏 
o Step 2: Write x(0) as a linear combination of v1, 

v2, …, vn (eigenvectors) 
§ 𝑆[�⃗�]𝔅 = 𝑥(0) → 	 [𝑥]𝔅 = 𝑆N9�⃗� = 

[𝑐9, 𝑐J, … , 𝑐']�   
§ �⃗�(0) = 𝑐9𝑣9 + 𝑐J𝑣J + ⋯+ 𝑐'𝑣' 

o Step 3: Rewrite 𝐴�𝑥(0) 
§ 𝐴�𝑥(0) = 𝐴�𝑐9𝑣9 + ⋯+ 𝐴�𝑐'𝑣' 

= 𝜆9𝑐9𝑣9 + ⋯+ 𝜆'𝑐'𝑣' 
 

Calculating the Determinant 
- (see Properties of Determinant/ Row Operations) 
- Cofactor Expansion (Laplace Expansion): 

o |𝐵| = 𝑏�9𝐶�9 + 𝑏�J𝐶�J + ⋯+ 𝑏�'𝐶�' 
= 𝑏9�𝐶9� + 𝑏J�𝐶J� + ⋯+ 𝑏'�𝐶'� 

=   𝑏��¡𝐶��¡
'

�¡¢9

=   𝑏�¡�𝐶�¡�

'

�¡¢9

 

where 𝐶�� = (−1)�_�𝑀��, and  bij  is the value 
excluded by finding the minor 𝑀�� for the 
cofactor 𝐶�� 
 

Subspace Given by Equation 
- V is the subspace given by the equation:  

𝑐9𝑥9 + 𝑐J𝑥J + ⋯+ 𝑐'𝑥' = 0 
o Finding the kernel of V: 

§ 𝑐9𝑥9 + 𝑐J𝑥J + ⋯+ 𝑐'𝑥' 

= [𝑐9 𝑐J … 𝑐'] �

𝑥9
𝑥J
⋮
𝑥'

� = 0 

⇒ 𝑀 = [𝑐9 𝑐J … 𝑐' ⋮ 0] 
𝑐9𝑥9 = −𝑐J𝑥J − ⋯− 𝑐'𝑥' 

𝑥J = 𝑟 
𝑥¤ = 𝑠 

… 
𝑥' = 𝑧 

Express �⃗� as a linear combination. 
o Finding the matrix N such that V = Im(N): 

§ Put the vectors of the linear combination 
from the result above into a matrix. 

 
Rank 
- rank(A) = rk(A) = # of leading 1s in rref(A) 
- Also represents the number of linearly independent 

columns of A, a.k.a. the dimension of the vector space 
generated by A’s columns 

- Properties 
o rank(A) ≤ n and rank(A) ≤ m => rank(A) ≤ 

min(n, m) 
o If A is inconsistent, then rk(A) < n since at least 

one row will consist of all zeros 
o If A has a unique solution, then rank(A) = m, 

since every variable must be bounded to a 
value (non-free) 

Properties of Transpose 
- (𝐴 + 𝐵)� = 𝐴� + 𝐵� 
- (𝐴𝐵)� = 𝐵�𝐴� 
- 𝑟𝑎𝑛𝑘(𝐴�) = 𝑟𝑎𝑛𝑘(𝐴) 
- (𝐴N9)� = (𝐴�)N9 
 
Quadratic Forms 
- A function 𝑞(𝑥9, 	𝑥J, … , 𝑥') from ℝ' to ℝ is called a 

quadratic form if it is a linear combination of the 
form 𝑥�𝑥� (where i and j may be equal). 

- A quadratic form can be written as 𝑞(�⃗�) = �⃗� ∙ 𝐴�⃗� =
�⃗��𝐴�⃗�, where A is symmetric.  

- The matrix A of q is given by the following rules: 
o 𝑎�� = the coefficient of 𝑥�J 
o 𝑎�� = 𝑎�� = 9

J
 (the coefficient of 𝑥�𝑥�) 

- Diagonalizing a Quadratic Form 
o Given 𝑞(�⃗�) = �⃗� ∙ 𝐴�⃗�, let 𝔅 be an orthonormal 

eigenbasis for A (see symmetric matrices), 
with associated eigenvalues 𝜆9, … , 𝜆'. Then, 
𝑞(�⃗�) = 𝜆9𝑐9J + ⋯+ 𝜆'𝑐'J, where ci are the 
coordinates of x with respect to 𝔅. 

- Definiteness of a Quadratic Form 
o Consider a quadratic form 𝑞(�⃗�) = �⃗� ∙ 𝐴𝑥, we 

say that: 
§ A is positive definite if q(x) > 0 for all 

x in ℝ' 
§ A is positive semi-definite if q(x) ≥ 0 

for all x in ℝ' 
§ Negative definite and negative semi-

definite are defined analogously. 
§ If q(x) takes on both positive and 

negative values, then it is said to be 
indefinite 

o A symmetric matrix A is positive definite iff 
all of its eigenvalues are positive. The matrix 
A is positive semi-definite iff all of its 
eigenvalues are positive or zero. It works 
analogously for negative definite and negative 
semi-definite. Finally, the matrix A is 
indefinite if it has both positive and negative 
eigenvalues. 

 
Singular Value Decomposition 
- The singular values of a matrix A are the square 

roots of the eigenvalues of the matrix ATA. It is 
customary to denote them in decreasing order: 

𝜎9 ≥ 𝜎J ≥ ⋯ ≥ 𝜎' ≥ 0 
o If A is a 𝑛 × 𝑚 matrix of rank r, then the 

singular values 𝜎9, 𝜎J, … , 𝜎¨ are non-zero, 
while 𝜎¨_9, … , 𝜎% are zero. 

- A can be decomposed using singular value 
decomposition, such that 𝐴𝑉 = 𝑈Σ ⇒ 𝐴 = 𝑈Σ𝑉�, 
where V is an orthogonal matrix formed by the 
orthonormal eigenbasis of ATA. Then 

𝑈 = >
| | | | | | |
𝑢9 𝑢J … 𝑢¨ 0 … 0
| | | | | | |

B 

where 𝑢9 =
«¬^
^
, 𝑢J =

«¬]
]
, … , 𝑢¨ =

«¬®
®

, and 

Σ = �

𝜎9
⋱ 0

𝜎¨ ⋮
0 ⋯ 0

� 

o Note: If A has a singular value of zero, it’s 
corresponding vector should be placed last in 
V, it should not have a corresponding vector 
in U, and Σ should include an additional 
column but not row for the singular value. 

 


