Scaling No Solution: The system of equations is inconsistent - Set up matrix equation as: $\begin{bmatrix} * & * & * & | 1 & 0 & 0 \\ * & * & * & | 0 & 1 & 0 \end{bmatrix}$ (i.e. contains a row/equation of the form [0 0 ... 0 | If a vector $\vec{v} \in \mathbb{R}^n$ is scaled by a factor of k, then 0 *]) the transformation matrix A is the $n \times n$ identity L* * * |0 0 1] Infinite Solutions: The system doesn't contain enough matrix $\times k$ information (equations) to have a unique solution, and get the left-hand side in rref. The right-hand side resulting in free variables. will then represent the inverse matrix, assuming - Unique Solution: There is enough information (i.e. there is no inconsistency. - Orthogonal Projection there is an equal or larger number of equations than **Invertibility Criterion** If given a line L which is spanned by the vector $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \text{ then } proj_L(\vec{x}) = x^{1/2} = k\vec{w} = \frac{\vec{x} \cdot \vec{w}}{||\vec{w}||^2} \vec{w}$ More generally, $proj_L(\vec{x}) = \frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 & w_1w_2 \\ w_1w_2 & w_2^2 \end{bmatrix} \vec{x}$ 0 variables; $n \ge m$) to determine the unique solution to a A is invertible if and only if ... particular system, i.e. NO free variables. $A\vec{x} = \vec{b}$ has a unique solution for any \vec{b} 0 Rank rank(A) = n0 rank(A) = rk(A) = # of leading 1s in rref(A) $det(A) \neq 0$ 0 - Also represents the number of linearly independent $ker(A) = \{\vec{0}\}$ $im(A) = \mathbb{R}^{n}$ 0 columns of A, a.k.a. the dimension of the vector space 0 - Reflection generated by A's columns The column vectors of A form a basis of \mathbb{R}^n If given a line L which is spanned by the vector 0 0 Properties The column vectors of A span \mathbb{R}^n $\begin{bmatrix} W_1 \\ W_2 \end{bmatrix}$, then $ref_L(\vec{x}) = \vec{x} - 2\vec{x}^{\perp} = 2\vec{x}^{//} - \vec{x} =$ $rk(A) \le n$ and $rk(A) \le m \Longrightarrow rk(A) \le min(n, m)$ 0 The column vectors of A are linearly 0 If A is inconsistent, then rk(A) < n since at least $\frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 - w_2^2 & 2w_1w_{2s} \\ 2w_1w_2 & w_2^2 - w_1^2 \end{bmatrix} \vec{x}$ More generally, $ref_L(\vec{x}) = \begin{bmatrix} a & b \\ b & -a \end{bmatrix} \vec{x}$ 0 independent. one row will consist of all zeros 0 fails to be an eigenvalue of A. 0 If A has a unique solution, then rank(A) = m, 0 - Note that following from these properties, only since every variable must be bounded to a 0 square matrices may be invertible value (non-free) - Rotation (counter-clockwise) Subspaces **Linear Transformations** $rot_{\theta}(\vec{x}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ $V \subset \mathbb{R}^n$, V is a subset of a vector space if and only if A function $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation if 0 it satisfies: $T(\vec{x}) = A\vec{x}$ for some matrix A of size $n \times m$ More generally, 0 $\vec{0}$ is in V 0 - T must also satisfy two properties: $rot_{\theta}(\vec{x}) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ where $a^2 + b^2 = 1$ (sum closure) $\forall \vec{v}, \vec{w} \in V, \ \vec{v} + \vec{w} \in V$ 0 $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}) \& T(k\vec{x}) = kT(\vec{x})$ 0 (scalar closure) $\forall v \in V, \forall k \in \mathbb{R}, k\vec{v} \in V$ When given a linear transformation T, we can 0 - Shearing **Redundancy and Linear Independence** sometimes solve for A by multiplying it with the 0 Vertical: Stretching a vector along the y-axis \rightarrow A vector is *redundant* in a set of other vectors if it $m \times m$ Identity matrix to get: $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$ can be expressed as a linear combination of the other $\mathbf{A} = \begin{pmatrix} \mathbf{i} & \cdots & \mathbf{i} \\ T(e_1) & \ddots & T(e_m) \\ \mathbf{i} & \cdots & \mathbf{i} \end{pmatrix}$ vectors, or it satisfies a non-trivial linear relation. Horizontal: Stretching a vector along the x-axis 0 $\rightarrow \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ A set of vectors is linearly independent if it does not contain any redundant vectors **Matrix Multiplication** Note: k does NOT represent the number of units **Determining Linear Dependence** 0 * To multiply a $m \times n$ with a $r \times s$ matrix, n must shifted Put the vectors into an augmented matrix by equal r(n = r), and the resulting matrix will be $m \times s$ **Common 3D Linear Transformations** column and solve for its rref. If the last $If A = \begin{bmatrix} a11 & \cdots & a1m \\ \vdots & \ddots & \vdots \\ an1 & \cdots & anm \end{bmatrix} and B = \begin{bmatrix} b11 & \cdots & b1s \\ \vdots & \ddots & \vdots \\ br1 & \cdots & brs \end{bmatrix},$ then BA = $\begin{bmatrix} a11 & \cdots & a1m \\ B & \vdots & \ddots & B & \vdots \\ an1 & \cdots & anm \end{bmatrix}$ - A reflection in the xy plane is given by: column contains a non-zero entry, then the set $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$ is linearly dependent This method corresponds to solving for the coefficients that satisfy the - Logic extends to other planes along axes. linear combination **Basis and Unique Representation** Zero Component Condition The product of two matrices is simply the composition - A set of vectors form a basis of V iff every vector v in A vector is non-redundant if it contains a nonof their linear transformations V can be expressed as a unique linear combination zero entry in a component where all the **Properties Orthonormal Bases** preceding vectors have a 0. Associativity 0 A basis in which all vectors are perpendicular and have If this was the case for all vectors in a set, 0 (AB)C=A(BC)• a norm (length) of one. then the set is linearly independent Distributivity С **Orthogonal Projections Properties of Determinant** (A+B)C = AC+BC- If a subspace V has an orthonormal basis u_1, \ldots, u_n , The determinant of a triangular matrix is just the A(C+D) = AC+ADthen $proj_V(\vec{x}) = (u_1 \cdot x)u_1 + \dots + (u_n \cdot x)u_n$ product of the diagonal entries - det $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ = det $\begin{pmatrix} A & 0 \\ B & C \end{pmatrix}$ = det(A) det(C)- det(A) = det (A^T) Dimension **Orthogonal Complement** - The number of vectors in a basis of V is called the V^{\perp} of V is the set of those vectors in \mathbb{R}^n that are dimension of V. orthogonal to all vectors in V. We can find at most *m* linearly independent 0 - $V^{\perp} = \ker(proj_V(\vec{x})), (V^{\perp})^{\perp} = V, V \cap V^{\perp} = \{\vec{0}\}$ $- \det(AB) = \det(A)\det(B)$ vectors in V. - $\det(A^m) = \det(A)^m$ $-\dim(V) + \dim(V^{\perp}) = n$ We need at least *m* vectors to span V. 0 - For similar matrices: det(A) = det(B)**Cauchy-Schwarz Inequality** If *m* vectors in V are linearly independent, then 0 **Row Operations:** $-|x \cdot y| \le ||x|| ||y||$ they form a basis of V. Multiplying a single row by a scalar k: Gram-Schmidt Process and QR Factorization 0 0 If m vectors in V span V, then they form a basis • $\det(B) = k * \det(A)$ A method of constructing an orthonormal basis of some of a. Row Swap: 0 **Fundamental Theorem of Linear Algebra** subspace $\det(B) = -\det(A)$ • $\dim(\operatorname{im} A) = \operatorname{rank}(A)$ - M = $\begin{bmatrix} | & | \\ v_1 v_2 \\ | & | \end{bmatrix}$ = QR = $\begin{bmatrix} | & | \\ u_1 u_2 \\ | & | \end{bmatrix}$ $\begin{bmatrix} ||v_1|| & u_1 \cdot v_2 \\ 0 & ||v_2|| \end{bmatrix}$ 0 Adding multiples of rows: \cap $\dim(\ker A) + \dim(\operatorname{im} A) = m$ for any A_{nxm} 0 det(B) = det(A)Coordinates Least Squares and Data Fitting - *Pattern continues for larger number of vectors* - Consider a basis $\mathfrak{B} = (v_1, \dots, v_n)$ of subspace V of - Normal Equation of Ax = b : **Orthogonal Transformations** \mathbb{R}^{n} . $\circ A^T A x = A^T b$ Orthogonal Transformations are linear transformations $\vec{x} = c_1 v_1 + \dots + c_n v_n$ - Least-Squares Solution: Thus, the scalars $c_1, c_2, ..., c_n$ are the \mathfrak{B} -coordinates of that preserve length. $x^* = (A^T A)^{-1} A^T b$ 0 x. In other words, $[\vec{x}]_{\mathfrak{B}} = \begin{bmatrix} c_1 \\ \cdots \\ c_n \end{bmatrix}$, meaning that $\vec{x} =$ **Properties of Orthogonal Transformations** Only unique in the case where A is $||\mathbf{A}\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n 0 linearly independent. Columns of A form an orthonormal basis of \mathbb{R}^n 0 - Error: $S[\vec{x}]_{\mathfrak{B}}$, where S is $[c_1 \dots c_2]$ 0 $A^{T}A = I_{n}$. Consider a linear transformation T. Let B be the B- $\mathbf{A}^{\text{-1}} = \mathbf{A}^{\text{T}}$. 0 $||b - Ax^*||$ 0 - Orthogonal Projection onto V of basis v_1, \dots, v_n : matrix of T, and let A be the standard matrix of T. 0 $(Ax) \cdot (Ay) = x \cdot y$ [|||] Then. **Matrix of Orthogonal Projection** $A = \begin{bmatrix} v_1 \dots v_n \\ | & | & | \end{bmatrix}$ 0 AS = SB or $B = S^{-1}AS$ Given a subspace V with an orthonormal basis, 0 (Similar matrices are matrices that satisfy this the matrix for the orthogonal projection onto V is Then the matrix of the orthogonal projection 0 $P = QQ^T$, where $Q = \begin{bmatrix} | & | & | \\ u_1 \dots u_n \end{bmatrix}$ property). onto V is $(A^T A)^{-1} A^T$ A B-matrix of T is diagonal only if under its basis, The projection of b onto Im(A) is Ax^* $T(v_1) = c_1 v_1, ..., and T(v_n) = c_n v_n$ 0

Common 2D Linear Transformations

Inverses

Solutions

Eigenvalues and Eigenvectors

- Given some matrix A, if a non-zero vector v satisfies $Av = \lambda v$, where λ is some scalar, then it is said that v is an *eigenvector* of A, and λ is the eigenvalue of that vector.
- 0 Geometrically, this is such a vector such that applying the transformation A keep the vector on the same line as the original vector.

- Algebraic Method

- $Av = \lambda v \Rightarrow (A \lambda I)v = 0 \Rightarrow$ The set of eigenvectors of A form the null space of $(A - \lambda I)v \Rightarrow \ker(A - \lambda I)$ is <u>non-trivial</u>, meaning $(A - \lambda I)$ is <u>not invertible</u> and $\det(A - \lambda I) = 0$
- 0 Thus, first solve for every value of λ using the determinant of A (the determinant will give the characteristic polynomial, whose roots will be the eigenvalues). Then apply each value to $(A - \lambda I)$ and solve for ker $(A - \lambda I)$.
 - For a 2x2 matrix, the characteristic polynomial is given by: $\lambda^2 - tr(A)\lambda - \det(A) = 0$ where tr(A) is given by sum of the diagonal elements of A.

- Diagonalization

The matrix A is diagonalizable iff there exists an eigenbasis for it. If $v_1, v_2, ..., v_n$ form an eigenbasis for A, such that $Av_1 = \lambda_1 v_1$, $Av_2 =$ $\lambda_2 v_2, \ldots, Av_n = \lambda_n v_n$, then the matrices:

 $S = \begin{bmatrix} | & | & | \\ v_1 & v_2 & \dots \\ | & | & | \end{bmatrix},$ $B = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \vdots \end{bmatrix}$ will diagonalize A such that $S^{-1}AS = B$

Note: A might not have enough eigenvectors to form an eigenbasis, in which case A is NOT diagonalizable

Symmetric Matrices

- Symmetric Matrices are matrices that satisfy the property $A = A^T$.
- Spectral Theorem: A matrix A is orthogonally diagonalizable (there exists an orthonormal eigenbasis S for A such that $S^{-1}AS = S^TAS$ is diagonal) iff A is a symmetric matrix.
 - If two eigenvectors of A have distinct 0 eigenvalues, then those two vectors must be orthogonal to each other.

Orthogonal Diagonalization of a Symmetric Matrix

- Use the Algebraic method to determine A's eigenvalues and find the basis of each eigenspace.
- 0 Use the Gram-Schmidt Process to find an orthonormal basis of each eigenspace.
- Form an orthonormal eigenbasis v_1, \dots, v_n for A 0 by concatenating the orthonormal bases found in step 2, and let

$$\mathbf{S} = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \dots & v_n \\ | & | & | & | \end{bmatrix}$$

where S is orthogonal and $S^{-1}AS$ is diagonal.

Properties of Symmetric Matrices

- 0 $A = A^T$
 - A^{-1} must also be symmetric 0

Miscellaneous Properties

- dim $(Im(A)^{\perp})$ = dim (ker (A^T))

$$\ker(A^T A) = \ker(A)$$

RREF

- A matrix is said to be in Reduced Row-Echelon Form if it satisfies the following:
- The leading coefficient in each row is 1 0
- The leading variables in each equation do not 0 appear in others (i.e. rows with leading variables must have the rest of the column of the leading coefficient be 0)
- 0 Leading variables appear in increasing order (i.e. leading coefficient "move" right)

Dynamical Systems

- A dynamical system x(t) is a system such that: $x_1(t+1) = a_{1,1}x_1(t) + a_{1,2}x_2(t) + \dots + a_{1,m}x_m(t)$ & $x_2(t+1) = a_{2,1}x_1(t) + a_{2,2}x_2(t) + \dots + a_{2,m}x_m(t)$

& ...
$$\Rightarrow Ax(t) = x(t+1) \Rightarrow x(t) = A^t x(0)$$

- Finding the state of x at an arbitrary time t would be tedious since it would require t multiplications of A. However there is a simpler way...

• Step 1: Diagonalize
$$A \rightarrow A = SDS^{-1}$$

• Find an eigenbasis \mathfrak{B} for A such that
 $\mathfrak{B} = \{v_1, \dots, v_n\}$. Then,
 $[\lambda_1 \quad 0 \quad 0 \quad 0]$

$$\mathbf{S} = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \dots & v_n \end{bmatrix}, \quad D = \begin{bmatrix} N_1 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Then
$$A^t = SD^tS^{-1}$$

<u>Step 2</u>: Write x(0) as a linear combination of v_1 , 0 v₂, ..., v_n (eigenvectors) $= S^{-1}\vec{x} =$

$$S[\vec{x}]_{\mathfrak{B}} = x(0) \to [\vec{x}]_{\mathfrak{B}}$$

$$\begin{bmatrix} c_1, \ c_2, \dots, c_n \end{bmatrix}^{-1}$$

$$\vec{x}(0) = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$
Star 2: Powerice Atra(0)

$$\underbrace{\operatorname{Step 5}}_{A^{t}x(0)} = A^{t}c_{1}v_{1} + \dots + A^{t}c_{n}v_{n}$$

$$= \lambda_1 c_1 v_1 + \dots + \lambda_n c_n v_n$$

Calculating the Determinant

0

- (see Properties of Determinant/ Row Operations) - È

Cofactor Expansion (Laplace Expansion):

$$|B| = b_{i1}C_{i1} + b_{i2}C_{i2} + \dots + b_{in}C_{in}$$

$$= b_{1j}C_{1j} + b_{2j}C_{2j} + \dots + b_{nj}C_{nj}$$

$$= \sum_{i'=1}^{n} b_{ij'}C_{ij'} = \sum_{i'=1}^{n} b_{i'j}C_{i'j}$$

where $C_{ij} = (-1)^{i+j} M_{ij}$, and b_{ij} is the value excluded by finding the minor M_{ij} for the cofactor C_{ii}

Subspace Given by Equation

V is the subspace given by the equation:

$$c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n} = 0$$
o Finding the kernel of V:
• $c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n}$

$$= [c_{1} \quad c_{2} \quad \dots \quad c_{n}] \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = 0$$

$$\Rightarrow M = [c_{1} \quad c_{2} \quad \dots \quad c_{n} : 0]$$

$$c_{1}x_{1} = -c_{2}x_{2} - \dots - c_{n}x_{n}$$

$$x_{2} = r$$

$$x_{3} = s$$

$$\dots$$

$$x_{n} = z$$
Express \vec{x} as a linear combination.

Finding the matrix N such that V = Im(N): Put the vectors of the linear combination from the result above into a matrix.

Rank

rank(A) = rk(A) = # of leading 1s in rref(A)Also represents the number of linearly independent columns of A, a.k.a. the dimension of the vector space generated by A's columns

Properties

- $rank(A) \le n$ and $rank(A) \le m \Longrightarrow rank(A) \le$ 0 $\min(n, m)$
- 0 If A is inconsistent, then rk(A) < n since at least one row will consist of all zeros
- 0 If A has a unique solution, then rank(A) = m, since every variable must be bounded to a value (non-free)

Properties of Transpose

- $(A + B)^T = A^T + B^T$ $(AB)^T = B^T A^T$
- $rank(A^T) = rank(A)$
- $(A^{-1})^T = (A^T)^{-1}$

Quadratic Forms

- A function $q(x_1, x_2, ..., x_n)$ from \mathbb{R}^n to \mathbb{R} is called a quadratic form if it is a linear combination of the form $x_i x_j$ (where *i* and *j* may be equal).
- A quadratic form can be written as $q(\vec{x}) = \vec{x} \cdot A\vec{x} =$ $\vec{x}^T A \vec{x}$, where A is symmetric.

- The matrix A of q is given by the following rules: a_{ii} = the coefficient of x_i^2 0

 $a_{ij} = a_{ji} = \frac{1}{2}$ (the coefficient of $x_i x_j$)

Diagonalizing a Quadratic Form

Given $q(\vec{x}) = \vec{x} \cdot A\vec{x}$, let \mathfrak{B} be an orthonormal eigenbasis for A (see symmetric matrices), with associated eigenvalues $\lambda_1, \ldots, \lambda_n$. Then, $q(\vec{x}) = \lambda_1 c_1^2 + \dots + \lambda_n c_n^2$, where c_i are the coordinates of x with respect to \mathfrak{B} .

- Definiteness of a Quadratic Form

- Consider a quadratic form $q(\vec{x}) = \vec{x} \cdot A\vec{x}$, we say that:
 - A is *positive definite* if q(x) > 0 for all x in \mathbb{R}^n
 - A is *positive semi-definite* if $q(x) \ge 0$ for all x in \mathbb{R}^n
 - Negative definite and negative semidefinite are defined analogously.
 - If q(x) takes on both positive and negative values, then it is said to be indefinite
- A symmetric matrix A is positive definite iff 0 all of its eigenvalues are positive. The matrix A is positive semi-definite iff all of its eigenvalues are positive or zero. It works analogously for negative definite and negative semi-definite. Finally, the matrix A is indefinite if it has both positive and negative eigenvalues.

Singular Value Decomposition

- The singular values of a matrix A are the square roots of the eigenvalues of the matrix A^TA. It is customary to denote them in decreasing order:

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$$

- If A is a $n \times m$ matrix of rank r, then the 0 singular values $\sigma_1, \sigma_2, \dots, \sigma_r$ are non-zero, while $\sigma_{r+1}, \ldots, \sigma_m$ are zero.
- A can be decomposed using singular value decomposition, such that $AV = U\Sigma \Rightarrow A = U\Sigma V^T$, where V is an orthogonal matrix formed by the orthonormal eigenbasis of A^TA. Then

$$\overline{U = \begin{bmatrix} 1 & | & | & | & | & | & | & | \\ u_1 & u_2 & \dots & u_r & 0 & \dots & 0 \\ | & | & | & | & | & | & | \\ where & u_1 = \frac{Av_1}{\sigma_1}, u_2 = \frac{Av_2}{\sigma_2}, \dots, u_r = \frac{Av_r}{\sigma_r}, and \\ \Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & 0 \\ & & \sigma_r & \vdots \\ & 0 & \cdots & 0 \end{bmatrix}}$$

Note: If A has a singular value of zero, it's 0 corresponding vector should be placed last in V, it should not have a corresponding vector in U, and Σ should include an additional column but not row for the singular value.