Solutions

- No Solution: The system of equations is inconsistent (i.e. contains a row/equation of the form [$00 \ldots 0$ | *])
- Infinite Solutions: The system doesn't contain enough information (equations) to have a unique solution, resulting in free variables.
Unique Solution: There is enough information (i.e. there is an equal or larger number of equations than variables; $n \geq m$) to determine the unique solution to a particular system, i.e. NO free variables.

Rank

$-\operatorname{rank}(\mathrm{A})=\operatorname{rk}(\mathrm{A})=\#$ of leading 1 s in $\operatorname{rref}(\mathrm{A})$
Also represents the number of linearly independent columns of A, a.k.a. the dimension of the vector space generated by A's columns

- Properties
- $\quad \mathrm{rk}(\mathrm{A}) \leq \mathrm{n}$ and $\mathrm{rk}(\mathrm{A}) \leq \mathrm{m}=>\mathrm{rk}(\mathrm{A}) \leq \min (\mathrm{n}, \mathrm{m})$
- If A is inconsistent, then $\mathrm{rk}(\mathrm{A})<\mathrm{n}$ since at least one row will consist of all zeros
- If A has a unique solution, then $\operatorname{rank}(A)=m$, since every variable must be bounded to a value (non-free)
Linear Transformations
- A function $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation if $T(\vec{x})=A \vec{x}$ for some matrix A of size $n \times m$
- T must also satisfy two properties:

$$
\quad T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y}) \& T(k \vec{x})=k T(\vec{x})
$$

- When given a linear transformation T, we can sometimes solve for A by multiplying it with the $m \times m$ Identity matrix to get:

$$
\circ \quad \mathrm{A}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
T\left(e_{1}\right) & \ddots & T\left(e_{m}\right) \\
\mid & \cdots & \mid
\end{array}\right)
$$

Matrix Multiplication

* To multiply a $m \times n$ with a $r \times s$ matrix, n must equal $r(n=r)$, and the resulting matrix will be $m \times s$ If $A=\left[\begin{array}{ccc}a 11 & \cdots & a 1 m \\ \vdots & \ddots & \vdots \\ a n 1 & \cdots & a n m\end{array}\right]$ and $B=\left[\begin{array}{ccc}b 11 & \cdots & b 1 s \\ \vdots & \ddots & \vdots \\ b r 1 & \cdots & b r s\end{array}\right]$,
then $\mathrm{BA}=\left[\begin{array}{cccc}a 11 & \cdots & a 1 m \\ B & \vdots & \ddots & B \\ \text { an1 } & \cdots & a n m\end{array}\right]$
The product of two matrices is simply the composition of their linear transformations

- Properties

Associativity

- Distributivity

$$
\text { - } \quad(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}
$$

$$
\text { - } \quad \mathrm{A}(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}
$$

Dimension

- The number of vectors in a basis of V is called the dimension of V .
- We can find at most m linearly independent vectors in V.
- We need at least m vectors to span V.
- If m vectors in V are linearly independent, then they form a basis of V.
- If m vectors in V span V , then they form a basis of a .
Fundamental Theorem of Linear Algebra
- $\quad \operatorname{dim}(\mathrm{im} \mathrm{A})=\operatorname{rank}(\mathrm{A})$
- $\quad \operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}(\operatorname{im} A)=m$ for any $A_{n x m}$

Coordinates

- Consider a basis $\mathfrak{B}=\left(v_{1}, \ldots, v_{n}\right)$ of subspace V of \mathbb{R}^{n}.

$$
\vec{x}=c_{1} v_{1}+\cdots+c_{n} v_{n}
$$

Thus, the scalars $c_{1}, c_{2}, \ldots, c_{n}$ are the \mathfrak{B}-coordinates of x . In other words, $[\vec{x}]_{\mathfrak{B}}=\left[\begin{array}{c}c_{1} \\ \ldots \\ c_{n}\end{array}\right]$, meaning that $\vec{x}=$ $S[\vec{x}]_{\mathcal{B}}$, where S is $\left[\begin{array}{lll}c_{1} & \ldots & c_{2}\end{array}\right]$

- Consider a linear transformation T. Let B be the \mathfrak{B} matrix of T, and let A be the standard matrix of T. Then,

$$
A S=S B \text { or } B=S^{-1} A S
$$

(Similar matrices are matrices that satisfy this property).

- A \mathfrak{B}-matrix of T is diagonal only if under its basis, $\mathrm{T}\left(v_{1}\right)=c_{1} v_{1}, \ldots$, and $\mathrm{T}\left(v_{n}\right)=c_{n} v_{n}$

Common 2D Linear Transformations

- Scaling
- If a vector $\vec{v} \in \mathbb{R}^{n}$ is scaled by a factor of k, then the transformation matrix A is the $n \times n$ identity matrix $\times k$
$\circ \quad \rightarrow k\left[\begin{array}{ccc}1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1\end{array}\right]=\left[\begin{array}{ccc}k & \cdots & 0 \\ \vdots & \ddots & k \\ 0 & \cdots & k\end{array}\right]$
- Orthogonal Projection
- If given a line L which is spanned by the vector

$$
\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \text {, then } \operatorname{proj}_{L}(\vec{x})=x / /=k \vec{w}=\frac{\vec{x} \cdot \vec{w}}{\|\vec{w}\|^{2}} \vec{w}
$$

- More generally, $\operatorname{proj}_{L}(\vec{x})=$

$$
\frac{1}{w_{1}^{2}+w_{2}^{2}}\left[\begin{array}{cc}
w_{1}^{2} & w_{1} w_{2} \\
w_{1} w_{2} & w_{2}^{2}
\end{array}\right] \vec{x}
$$

Reflection

- If given a line L which is spanned by the vector $\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$, then $\operatorname{ref}_{L}(\vec{x})=\vec{x}-2 \vec{x}^{\perp}=2 \vec{x} / /-\vec{x}=$ $\frac{1}{w_{1}{ }^{2}+w_{2}{ }^{2}}\left[\begin{array}{cc}w_{1}{ }^{2}-w_{2}{ }^{2} & 2 w_{1} w_{2 s} \\ 2 w_{1} w_{2} & w_{2}{ }^{2}-w_{1}{ }^{2}\end{array}\right] \vec{x}$
- More generally, $\operatorname{ref}_{L}(\vec{x})=\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right] \vec{x}$
- Rotation (counter-clockwise)
- $\operatorname{rot}_{\theta}(\vec{x})=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
- More generally,

$$
\operatorname{rot}_{\theta}(\vec{x})=\left[\begin{array}{cc}
\mathrm{a} & -\mathrm{b} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \text { where } a^{2}+b^{2}=1
$$

Shearing

- Vertical: Stretching a vector along the y-axis \rightarrow

$$
\left[\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right]
$$

- Horizontal: Stretching a vector along the x -axis

$$
\rightarrow\left[\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right]
$$

- Note: k does NOT represent the number of units shifted
Common 3D Linear Transformations
- A reflection in the xy plane is given by:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z
\end{array}\right]
$$

- Logic extends to other planes along axes.

Basis and Unique Representation
A set of vectors form a basis of V iff every vector v in
V can be expressed as a unique linear combination

Orthonormal Bases

- A basis in which all vectors are perpendicular and have a norm (length) of one.
Orthogonal Projections
- If a subspace V has an orthonormal basis u_{1}, \ldots, u_{n},
then $\operatorname{proj}_{V}(\vec{x})=\left(u_{1} \cdot x\right) u_{1}+\cdots+\left(u_{n} \cdot x\right) u_{n}$

Orthogonal Complement

- V^{\perp} of V is the set of those vectors in \mathbb{R}^{n} that are orthogonal to all vectors in V .
- $V^{\perp}=\operatorname{ker}\left(\operatorname{proj}_{V}(\vec{x})\right),\left(V^{\perp}\right)^{\perp}=V, V \cap V^{\perp}=\{\overrightarrow{0}\}$
$-\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n$
Cauchy-Schwarz Inequality
- $|x \cdot y| \leq||x||| | y| |$

Gram-Schmidt Process and QR Factorization

- A method of constructing an orthonormal basis of some subspace
$-\mathrm{M}=\left[\begin{array}{cc}\mid & \mid \\ v_{1} v_{2} \\ \mid & \mid\end{array}\right]=Q R=\left[\begin{array}{cc}\mid & \mid \\ u_{1} u_{2} \\ | | & \mid\end{array}\right]\left[\begin{array}{cc}| | v_{1}| | & u_{1} \cdot v_{2} \\ 0 & \left\|v_{2}\right\|\end{array}\right]$
- *Pattern continues for larger number of vectors*

Orthogonal Transformations

- Orthogonal Transformations are linear transformations that preserve length.
Properties of Orthogonal Transformations
$\circ \quad\|\mathrm{Ax}\|=\|\mathrm{x}\|$ for all x in \mathbb{R}^{n}
- Columns of A form an orthonormal basis of \mathbb{R}^{n}
- $\quad A^{T} A=I_{n}$.
$\mathrm{A}^{-1}=\mathrm{A}^{\mathrm{T}}$.
$(A x) \cdot(A y)=x \cdot y$
- Matrix of Orthogonal Projection
- Given a subspace V with an orthonormal basis, the matrix for the orthogonal projection onto V is

$$
P=Q Q^{T} \text {, where } Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
u_{1} & \ldots & u_{n} \\
\mid & \mid & \mid
\end{array}\right]
$$

Inverses

- Set up matrix equation as:

$$
\left[\begin{array}{lll|lll}
* & * & * & 1 & 0 & 0 \\
* & * & * & \mid 0 & 1 & 0 \\
* & * & * & \mid 0 & 0 & 1
\end{array}\right]
$$

and get the left-hand side in rref. The right-hand side will then represent the inverse matrix, assuming there is no inconsistency.

Invertibility Criterion

A is invertible if and only if ...

$$
A \vec{x}=\vec{b} \text { has a unique solution for any } \vec{b}
$$

$\operatorname{rank}(A)=n$
$\operatorname{det}(A) \neq 0$
$\operatorname{ker}(A)=\{\overrightarrow{0}\}$
$\operatorname{im}(A)=\mathbb{R}^{n}$
The column vectors of A form a basis of \mathbb{R}^{n}
The column vectors of A span \mathbb{R}^{n}
The column vectors of A are linearly independent.

- 0 fails to be an eigenvalue of A.
- Note that following from these properties, only
square matrices may be invertible

Subspaces

$-V \subset \mathbb{R}^{n}, \mathrm{~V}$ is a subset of a vector space if and only if it satisfies:

$\overrightarrow{0}$ is in V

(sum closure) $\forall \vec{v}, \vec{w} \in V, \vec{v}+\vec{w} \in V$
(scalar closure) $\forall v \in V, \forall k \in \mathbb{R}, k \vec{v} \in V$

Redundancy and Linear Independence

- A vector is redundant in a set of other vectors if it can be expressed as a linear combination of the other vectors, or it satisfies a non-trivial linear relation.
- A set of vectors is linearly independent if it does not contain any redundant vectors

Determining Linear Dependence

- Put the vectors into an augmented matrix by column and solve for its rref. If the last column contains a non-zero entry, then the set is linearly dependent
- This method corresponds to solving
for the coefficients that satisfy the linear combination

Zero Component Condition

- A vector is non-redundant if it contains a nonzero entry in a component where all the preceding vectors have a 0 .
- If this was the case for all vectors in a set, then the set is linearly independent

Properties of Determinant

- The determinant of a triangular matrix is just the
product of the diagonal entries
$\operatorname{det}\left(\begin{array}{ll}A & B \\ 0 & C\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}A & 0 \\ B & C\end{array}\right)=\operatorname{det}(A) \operatorname{det}(C)$
$\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
$-\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
$\operatorname{det}\left(A^{m}\right)=\operatorname{det}(A)^{m}$
- For similar matrices: $\operatorname{det}(A)=\operatorname{det}(B)$
- Row Operations:
- Multiplying a single row by a scalar k :
- $\quad \operatorname{det}(B)=k * \operatorname{det}(A)$
- Row Swap:
- $\quad \operatorname{det}(B)=-\operatorname{det}(A)$
- Adding multiples of rows:
- $\operatorname{det}(B)=\operatorname{det}(A)$

Least Squares and Data Fitting

- Normal Equation of $\mathrm{Ax}=\mathrm{b}$:
- $A^{T} A x=A^{T} b$
- Least-Squares Solution:
- $\quad x^{*}=\left(A^{T} A\right)^{-1} A^{T} b$
- Only unique in the case where A is linearly independent.
- Error:

○ $\quad\left\|b-A x^{*}\right\|$
Orthogonal Projection onto V of basis v_{1}, \ldots, v_{n} :
○ $A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ v_{1} & \ldots & v_{n} \\ \mid & \mid & \mid\end{array}\right]$

- Then the matrix of the orthogonal projection onto V is $\left(A^{T} A\right)^{-1} A^{T}$
The projection of b onto $\operatorname{Im}(A)$ is $A x^{*}$

Eigenvalues and Eigenvectors

- Given some matrix A, if a non-zero vector v satisfies $A v=\lambda v$, where λ is some scalar, then it is said that v is an eigenvector of A, and λ is the eigenvalue of that vector
- Geometrically, this is such a vector such that applying the transformation A keep the vector on the same line as the original vector.

Algebraic Method

- $A v=\lambda v \Rightarrow(A-\lambda I) v=0 \Rightarrow$ The set of eigenvectors of A form the null space of $(A-\lambda I) v \Rightarrow \operatorname{ker}(A-\lambda I)$ is non-trivial, meaning $(A-\lambda I)$ is not invertible and $\operatorname{det}(A-\lambda I)=0$
- Thus, first solve for every value of λ using the determinant of A (the determinant will give the characteristic polynomial, whose roots will be the eigenvalues). Then apply each value to $(A-\lambda I)$ and solve for $\operatorname{ker}(A-\lambda I)$.
- For a 2×2 matrix, the characteristic polynomial is given by:

$$
\lambda^{2}-\operatorname{tr}(A) \lambda-\operatorname{det}(A)=0
$$

where $\operatorname{tr}(A)$ is given by sum of the diagonal elements of A.

Diagonalization

- The matrix A is diagonalizable iff there exists an eigenbasis for it. If $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ form an eigenbasis for A , such that $A \mathrm{v}_{1}=\lambda_{1} \mathrm{v}_{1}, \mathrm{Av}_{2}=$ $\lambda_{2} v_{2}, \ldots, \mathrm{Av}_{\mathrm{n}}=\lambda_{n} \mathrm{v}_{\mathrm{n}}$, then the matrices:

$$
S=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathrm{v}_{1} & \mathrm{v}_{2} & \ldots \\
\mid & \mid & \mid
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \vdots
\end{array}\right]
$$

will diagonalize A such that $S^{-1} A S=B$

- Note: A might not have enough eigenvectors to form an eigenbasis, in which case A is NOT diagonalizable

Symmetric Matrices

Symmetric Matrices are matrices that satisfy the property $A=A^{T}$.

- Spectral Theorem: A matrix A is orthogonally diagonalizable (there exists an orthonormal eigenbasis S for A such that $S^{-1} A S=S^{T} A S$ is diagonal) iff A is a symmetric matrix.
- If two eigenvectors of A have distinct eigenvalues, then those two vectors must be orthogonal to each other.
- Orthogonal Diagonalization of a Symmetric Matrix
- Use the Algebraic method to determine A's eigenvalues and find the basis of each eigenspace.
- Use the Gram-Schmidt Process to find an orthonormal basis of each eigenspace.
- Form an orthonormal eigenbasis v_{1}, \ldots, v_{n} for A by concatenating the orthonormal bases found in step 2, and let

$$
\mathrm{S}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
v_{1} & v_{2} & \ldots & v_{n} \\
\mid & \mid & \mid & \mid
\end{array}\right]
$$

where S is orthogonal and $S^{-1} A S$ is diagonal.
Properties of Symmetric Matrices

- $A=A^{T}$
- A^{-1} must also be symmetric

Miscellaneous Properties

$-\operatorname{dim}\left(\operatorname{Im}(A)^{\perp}\right)=\operatorname{dim}\left(\operatorname{ker}\left(A^{T}\right)\right)$
$-\operatorname{ker}\left(A^{T} A\right)=\operatorname{ker}(A)$

RREF

- A matrix is said to be in Reduced Row-Echelon Form if it satisfies the following:
- The leading coefficient in each row is 1
- The leading variables in each equation do not appear in others (i.e. rows with leading variables must have the rest of the column of the leading coefficient be 0)
- Leading variables appear in increasing order (i.e. leading coefficient "move" right)

Dynamical Systems

- A dynamical system $x(t)$ is a system such that:
$x_{1}(t+1)=a_{1,1} x_{1}(t)+a_{1,2} x_{2}(t)+\cdots+a_{1, m} x_{m}(t)$
$\& x_{2}(t+1)=a_{2,1} x_{1}(t)+a_{2,2} x_{2}(t)+\cdots+a_{2, m} x_{m}(t)$
$\& \ldots \Rightarrow A x(t)=x(t+1) \Rightarrow x(t)=A^{t} x(0)$
- Finding the state of x at an arbitrary time t would be tedious since it would require t multiplications of A .
However there is a simpler way...
- Solving Dynamical Systems
- Step 1: Diagonalize $A \rightarrow A=S D S^{-1}$
- Find an eigenbasis \mathfrak{B} for A such that $\mathfrak{B}=\left\{v_{1}, \ldots, v_{n}\right\}$. Then,
$\mathrm{S}=\left[\begin{array}{cccc}\mid & \mid & \mid & \mid \\ v_{1} & v_{2} & \ldots & v_{n} \\ \mid & \mid & \mid & \mid\end{array}\right], D=\left[\begin{array}{cccc}\lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$
Then $\boldsymbol{A}^{\boldsymbol{t}}=\boldsymbol{S D}^{\boldsymbol{t}} \boldsymbol{S}^{\mathbf{- 1}}$
- Step 2: Write $x(0)$ as a linear combination of v_{1},
$\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ (eigenvectors)
- $\quad S[\vec{x}]_{\mathfrak{B}}=x(0) \rightarrow[\vec{x}]_{\mathfrak{B}}=S^{-1} \vec{x}=$
$S[\bar{x}]_{\mathfrak{B}}=x(0) \rightarrow$
$\left[c_{1}, c_{2}, \ldots, c_{n}\right]^{T}$
$\vec{x}(0)=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$
- Step 3: Rewrite $A^{t} x(0)$

$$
\begin{array}{r}
A^{t} x(0)=A^{t} c_{1} v_{1}+\cdots+A^{t} c_{n} v_{n} \\
=\lambda_{1} c_{1} v_{1}+\cdots+\lambda_{n} c_{n} v_{n}
\end{array}
$$

Calculating the Determinant

- (see Properties of Determinant/ Row Operations)
- Cofactor Expansion (Laplace Expansion):

$$
\bigcirc \quad|B|=b_{i 1} C_{i 1}+b_{i 2} C_{i 2}+\cdots+b_{i n} C_{i n}
$$

$=b_{1 j} C_{1 j}+b_{2 j} C_{2 j}+\cdots+b_{n j} C_{n j}$
$=\sum_{j^{\prime}=1}^{n} b_{i j^{\prime}} C_{i j^{\prime}}=\sum_{i^{\prime}=1}^{n} b_{i^{\prime} j} C_{i^{\prime} j}$
where $C_{i j}=(-1)^{i+j} M_{i j}$, and $b_{i j}$ is the value excluded by finding the minor $M_{i j}$ for the cofactor $C_{i j}$

Subspace Given by Equation

- V is the subspace given by the equation:

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=0
$$

- Finding the kernel of V :

$$
\begin{gathered}
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
=\left[\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=0 \\
\Rightarrow M=\left[\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n} \quad \vdots
\end{array}\right] \\
c_{1} x_{1}=-c_{2} x_{2}-\cdots-c_{n} x_{n} \\
x_{2}=r \\
x_{3}=s \\
\cdots \\
x_{n}=z
\end{gathered}
$$

Express \vec{x} as a linear combination.

- Finding the matrix N such that $\mathrm{V}=\operatorname{Im}(\mathrm{N})$:
- Put the vectors of the linear combination from the result above into a matrix.

Rank

$\operatorname{rank}(\mathrm{A})=\operatorname{rk}(\mathrm{A})=\#$ of leading 1 s in $\operatorname{rref}(\mathrm{A})$
Also represents the number of linearly independent columns of A, a.k.a. the dimension of the vector space generated by A's columns

- Properties

- $\operatorname{rank}(\mathrm{A}) \leq \mathrm{n}$ and $\operatorname{rank}(\mathrm{A}) \leq \mathrm{m}=>\operatorname{rank}(\mathrm{A}) \leq$ $\min (\mathrm{n}, \mathrm{m})$
- If A is inconsistent, then $\mathrm{rk}(\mathrm{A})<\mathrm{n}$ since at least one row will consist of all zeros
- If A has a unique solution, then $\operatorname{rank}(A)=m$, since every variable must be bounded to a value (non-free)

Properties of Transpose
$-(A+B)^{T}=A^{T}+B^{T}$
$(A B)^{T}=B^{T} A^{T}$
$\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)$
$\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

Quadratic Forms

- A function $q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from \mathbb{R}^{n} to \mathbb{R} is called a quadratic form if it is a linear combination of the form $x_{i} x_{j}$ (where i and j may be equal).
A quadratic form can be written as $q(\vec{x})=\vec{x} \cdot A \vec{x}=$ $\vec{x}^{T} A \vec{x}$, where A is symmetric.
- The matrix A of q is given by the following rules:

$$
\begin{array}{ll}
\circ & a_{i i}=\text { the coefficient of } x_{i}^{2} \\
\circ & a_{i j}=a_{j i}=\frac{1}{2}\left(\text { the coefficient of } x_{i} x_{j}\right)
\end{array}
$$

Diagonalizing a Quadratic Form

- Given $q(\vec{x})=\vec{x} \cdot A \vec{x}$, let \mathfrak{B} be an orthonormal eigenbasis for A (see symmetric matrices), with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then, $q(\vec{x})=\lambda_{1} c_{1}{ }^{2}+\cdots+\lambda_{n} c_{n}{ }^{2}$, where c_{i} are the coordinates of x with respect to \mathfrak{B}.
Definiteness of a Quadratic Form
- Consider a quadratic form $q(\vec{x})=\vec{x} \cdot A \vec{x}$, we say that:
- A is positive definite if $\mathrm{q}(\mathrm{x})>0$ for all x in \mathbb{R}^{n}
- A is positive semi-definite if $\mathrm{q}(\mathrm{x}) \geq 0$ for all x in \mathbb{R}^{n}
- Negative definite and negative semidefinite are defined analogously.
- If $q(x)$ takes on both positive and negative values, then it is said to be indefinite
- A symmetric matrix A is positive definite iff all of its eigenvalues are positive. The matrix A is positive semi-definite iff all of its eigenvalues are positive or zero. It works analogously for negative definite and negative semi-definite. Finally, the matrix A is indefinite if it has both positive and negative eigenvalues.

Singular Value Decomposition

- The singular values of a matrix A are the square roots of the eigenvalues of the matrix $\mathrm{A}^{\mathrm{T}} \mathrm{A}$. It is customary to denote them in decreasing order:

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
$$

- If A is a $n \times m$ matrix of rank r, then the singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ are non-zero, while $\sigma_{r+1}, \ldots, \sigma_{m}$ are zero.
A can be decomposed using singular value decomposition, such that $A V=U \Sigma \Rightarrow A=U \Sigma V^{T}$, where V is an orthogonal matrix formed by the orthonormal eigenbasis of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$. Then

$$
U=\left[\begin{array}{ccccccc}
\mid & \mid & \mid & \mid & \mid & \mid & \mid \\
u_{1} & u_{2} & \ldots & u_{r} & 0 & \ldots & 0 \\
\mid & \mid & \mid & \mid & \mid & \mid & \mid
\end{array}\right]
$$

where $u_{1}=\frac{A v_{1}}{\sigma_{1}}, u_{2}=\frac{A v_{2}}{\sigma_{2}}, \ldots, u_{r}=\frac{A v_{r}}{\sigma_{r}}$, and

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \ddots & & 0 \\
& & \sigma_{r} & \vdots \\
& 0 & \cdots & 0
\end{array}\right]
$$

- Note: If A has a singular value of zero, it's corresponding vector should be placed last in V, it should not have a corresponding vector in U, and Σ should include an additional column but not row for the singular value.

